On the Complexity of Specification Morphisms
نویسندگان
چکیده
The existence and the construction of a specification morphism between two algebraic specifications is a crucial step in modular system design and in the reusability of software. The problem of determining the existence of a signature morphism between two algebraic signatures is analyzed and proved to be NP-complete by reducing the well known 3SAT problem. As a consequence, the problem of finding a specification morphism is at least as hard as that of verifying its existence.
منابع مشابه
On morphisms of crossed polymodules
In this paper, we prove that the category of crossed polymodules (i.e. crossed modules of polygroups) and their morphisms is finitely complete. We, therefore, generalize the group theoretical case of this completeness property of crossed modules.
متن کاملToroidalization of locally toroidal morphisms of 3-folds
A toroidalization of a dominant morphism $varphi: Xto Y$ of algebraic varieties over a field of characteristic zero is a toroidal lifting of $varphi$ obtained by performing sequences of blow ups of nonsingular subvarieties above $X$ and $Y$. We give a proof of toroidalization of locally toroidal morphisms of 3-folds.
متن کاملMorphism axioms
We introduce a new concept in the area of formal logic: axioms for model morphisms. We work in the setting of specification languages that define the semantics of a theory as a category of models. While it is routine to use axioms to specify the class of models of a theory, there has so far been no analogue to systematically specify the morphisms between these models. This leads to subtle probl...
متن کاملMAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM
We investigated maximal Prym varieties on finite fields by attaining their upper bounds on the number of rational points. This concept gave us a motivation for defining a generalized definition of maximal curves i.e. maximal morphisms. By MAGMA, we give some non-trivial examples of maximal morphisms that results in non-trivial examples of maximal Prym varieties.
متن کاملOn the Asymptotic Abelian Complexity of Morphic Words
The subword complexity of an infinite word counts the number of subwords of a given length, while the abelian complexity counts this number up to letter permutation. Although a lot of research has been done on the subword complexity of morphic words, i.e., words obtained as fixed points of iterated morphisms, little is known on their abelian complexity. In this paper, we undertake the classific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 189 شماره
صفحات -
تاریخ انتشار 1997